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Abstract. The structure constants for Moyal brackets of an infinite basis of functions on the
algebraic manifoldsM of pseudo-unitary group® (N+, N_) are provided. They generalize

the Virasoro andV, algebras to higher dimensions. The connection with volume-preserving
diffeomorphisms onM, higher generalized-spin and tensor operator algebrds(df., N_) is
discussed. These centrally extended, infinite-dimensional Lie algebras also provide the arena for
nonlinear integrable field theories in higher dimensions, residual gauge symmetries of higher-
extended objects in the light-cone gauge &ridalgebras for tractable non-commutative versions

of symmetric curved spaces.

The general study of infinite-dimensional algebras and groups, their guantum deformations (in
particular, central extensions) and representation theory has not progressed very far, except for
some important achievements in one- and two-dimensional systems, and there can be no doubt
that a breakthrough in the subject would provide new insights into the two central problems
of modern physics: unification of all interactions and exact solvability in QFT and statistics.
The aforementioned achievements refer mainly to Virasoro and Kac—Moody symmetries
(see, e.g., [1,2]), which have played a fundamental role in the analysis and formulation of
conformally invariant (quantum and statistical) field theories in one and two dimensions, and
systems in higher dimensions which in some essential respects are one- or two-dimensional
(e.g. string theory). Generalizations of the Virasoro symmetry, as the algebr@'diff
reparametrizations of the circle, led to the infinite-dimensional Lie algebras of area-preserving
diffeomorphisms sdiff ) of two-dimensional surfaces. These algebras naturally appear
as a residual gauge symmetry in the theory of relativistic membranes [3], which exhibits
an intriguing connection with the quantum mechanics of space constant (e.g. vacuum
configurations)SU (N) Yang—Mills potentials in the limitv.— oo [4]; the argument that
the internal symmetry space of tlié(oco) pure Yang—Mills theory must be a functional
space, actually the space of configurations of a string, was pointed out in [5]. Moreover,
theW,, andWi., algebras of area-preserving diffeomorphisms of the cylinder [6] generalize
the underlying Virasoro gauged symmetry of the light-cone two-dimensional induced gravity
discovered by Polyakov [7] by including all positive conformal-spin currents [8], and induced
actions for these/V-gravity theories have been proposed [9, 10]. Additionally, ¥hig.
(dynamical) symmetry has been identified by the authors of [11] as the set of canonical

0305-4470/00/080069+07$30.00 © 2000 IOP Publishing Ltd L69



L70 Letter to the Editor

transformations that leave invariant the Hamiltonian of a two-dimensional electron gas in
a perpendicular magnetic field, and appears to be relevant in the classification of all the
universality classes dhcompressible quantum fluigsd the identification of the quantum
numbers of the excitations in the quantum Hall effect. Higher-spin symmetry algebras were
introduced in [12] and could provide a guiding principle towards the still unknown ‘M-theory’.

Itis remarkable that area-preserving diffeomorphisms, higher-spimaaldebras can be
seen as distinct members of a one-parameter fafjlyfu (2))—or the non-compact version
L, (su(1, 1))—of non-isomorphic [13] infinite-dimensional Lie algebras $(2) —and
SU (1, 1)—tensor operators, more precisely, the factor algereu(2)) = U(su(2))/Z,
of the universal enveloping algelirdsu (2)) by the idealZ,, = (é —R?w)U(su(2)) generated
by the Casimir operatof of su(2) (u denotes an arbitrary complex number). The structure
constants for, (su(2)) and £, (su(1, 1)) are well known for the Racah—-Wigner basis of
tensor operators [14], and they can be written in terms of Clebsch—Gordan and (generalized)
6;-symbols [3,8,15]. Another interesting feature®f(su(2)) is that, wheru coincides with
the eigenvalue of in an irepD; of SU(2), thatisu = j(j + 1), there exists an ideg
in £, (su(2)) such that the quotient, (su(2))/x =~ sl(2j + 1, C) or su(2j + 1), by taking
a compact real form of the complex Lie algebra [16]. That isfoe j(j + 1) the infinite-
dimensional algebrd,, (su(2)) collapses to a finite-dimensional one. This fact was used in [3]
to approximate Iirrﬁa::a L, (su(2)) ~ sdiff (5?) by su(N)|y- o0 (‘large number of colours’).

The generalization of these constructions to general unitary groups proves to be quite
unwieldy, and a canonical classification@f N)-tensor operators has, so far, been proven to
exist only forU (2) andU (3) (see [14] and references therein). Tensor labelling is provided in
these cases by the Gel'fand—Weyl pattern for vectors in the carrier space of the irtg@é)of

In this letter, a quite appropriate basis of operator&fgi« (N+, N-)), i = (U1, - - ., iy ),

N = N, + N_, is provided and the structure constants, for the particular case of the boson
realization of quantum associative operatorial algebras on algebraic maniglds =
U(N+, N_)/UQ)V, are calculated. The particular set of operatorg{/{(a(N., N_)) is the
following:

]:‘Im‘ = H(éaa)la_(z;‘bu [Mapl+3 g IMpal)/2 H(éaﬂ)lmaﬁ\
o

a<p
i‘iImI = n(éw)luf(z,sm Imapl+3 5o Impal)/2 1_[ (Gﬂa)\mnﬁl (1)

a<f

where Gaﬁ,a,ﬂ = 1,...,N, are theU(N., N_) Lie-algebra (step) generators with
commutation relations

[éalﬂl’ Gazﬂz] = E(nalﬁzéazﬂl - nazﬂléalﬂz) (2)
andp = diag(1, .M+, 1, -1, .Y, —1) is usedto raise and lower indices; the upper (generalized
spin) index! = (I, ..., Iy) of L in (1) represents awv-dimensional vector which, for the

present, is taken to lie on an half-integral lattice; the lower ingegymbolizes a integral
upper-triangulatv x N matrix, andjm| denotes the absolute value of all its entries. Thus,
the operatorsL,’n are labelled byv + N(N — 1)/2 = N(N + 1)/2 indices, in the same way
as wavefunctiongf,; in the carrier space of irreps 6f(N). An implicit quotient by the ideal
I; = ]‘[;\.’:l(éj - WMJ-)U(u(M, N_)) generated by the Casimir operators
C1 =G =huy Co=GEGY =TPpa, ... ©)
is understood. The manifest expression of the structure congtdotshe commutators
(L), L1 =L L] - L]L), = fkIRILS 4)

m? mnK
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of a pair of operators (1) of; (u(N+, N_)) entails an unpleasant and difficult computation,
because of inherent ordering problems. However, the essence of the full quantum algebra
L;(u(N+, N_)) can be still captured in a classical construction by extending the Poisson—Lie
bracket

(L1, LYol = (s G G e DL (5)

ms L IPL = W1 G azpy = Nz U a po aerlﬂl aGazﬂz

of apair of functiond./,, L; onthe commuting coordinat€k to its deformed version, in the
sense of [17]. To perform calculations with (5) is still rather complicated because of the non-
canonical brackets for the generating eleme¥gg. Nevertheless, there is a standard boson
operator realizatiolG,s = a.ag of the generators af(N+, N_) for which things simplify
greatly. Indeed, we shall understand that the quotient by the ideal generated by polynomials
GopGanp, — Ganp,Gayp, IS taken, so that the Poisson-Lie bracket (5) coincides with the
standard Poisson bracket

oLl aL! 9Ll oL/
- ) ©)

Ly, L}p =g
Lo Ll "5<aaa 9as  dag daq

for the Heisenberg—Weyl algebra. There is basically only one possible deformation of the
bracket (6)—corresponding to a normal ordering—that fulfils the Jacobi identities [17], which
is the Moyal bracket [18]:

(h/2)"™

o0
L[ ,LJ — Ll LJ _ LJ L[ — 2 2r+l , LJ 7
(Ly. Liw =Ly % Ly = L+ L, ; ot Gl
whereL x L' = exp(gP)(L, L") is an invariant associativeproduct and
d"L "L’
P (L,L) = O ¢ (8)

Tox, ... 0x, 3X,, ... 0x,,

with x = (a,a) and Yoyxon = (—On 8) We setP%(L,L) = LL'; see also that

PYL,L) = {L,L'}p. Note the resemblance between the Moyal bracket (7ydwariant
symbolsL! and the standard commutator (4) for operarbfgs It is worthwhile mentioning
that Moyal brackets were identified as the primary quantum deformatigrof the classical
algebraw,, of area-preserving diffeomorphysms of the cylinder (see [19]).
With this information at hand, the manifest expression of the structure congtémtshe
Moyal bracket (7) is the following:
I+ =% 8,

(h 2)2r+1 e .
Ll L) 22(2/+1)' 0@ oz {1 (0 ao) Lope

follag, ... az) = Y (=D *11‘[ fo® om) fo (I —n)

pGH(ZHD
(s) — 7@ 0(s—€,) 1
f[() Iaz() m) IO‘;)(A) +( l) S—tp ( Z m%mﬂ — Z mﬁ%m> (9)
B>ap (s B<ap(s
s—1
) _— O _ jlp+l) _
Iam.y) — lope T Z 8%(0""%) '™ =1 =1

1=(Lp+D)O(s—L,)

0, sgép}

O(s —Ly) = {1 s>/ 801, = (81,ozj’ s 8N,a,»)
) 2
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wherel'l(zz”l) denotes the set of all possible partitignsof a string(ay, . .., az-) of length
2r +1 into two substrings
Ly 2r+1—4,,
(Olp(o), ...,Olp(g))(()(@(g.q.l), ...,Olb/,)(gr)) (10)

of length¢,, and 2 + 1 — £,,, respectively. The number of elemenisn H(Zz”l) is clearly
dim(n(zzrﬂ)) = 25:61 (2r(fr1ilz))!!e! = 2%, _
Forr = 0, there are just two partitiongx)(-), (-)(«), and the leading (classicdl,— 0)

structure constants are, for example:

niz(a):J(X(Zmaﬂ_Zmﬂa) _Ia<znaﬁ_znﬁa)- (11)
B>a B<a B>a B<a

In this limit they reproduce the Virasoro commutation relations for the particular generators
Ve = Ly | wherek € Z ande,s denotes an upper-triangular matrix with zero entries except
for one atthéaB)-position. Indeed, there aNe(N — 1) non-commutingirasoro sectorsin (9),
corresponding to each root 8U (N., N_), with classical commutation relations:

Ve Ve = nesign(p — )k — DV (12)

For larger, we can benefit from the use of algebraic-computing programs such as [20] to
deal with the high number of partitions.

Our boson operator realizati®g = aqag of theu(N., N_) generators corresponds to
the particular case gig = (N, 0, .. ., 0) for the Casimir eigenvalues, so that the commutation
relations (9) are related to the particular algeBga(u(N+, N_)) (see below for more general
cases). A different (minimal) realization df, (s (1, 1)) in terms of a single boso(, a),
which corresponds tg, = 5.(5. — 1) = —1—36 for the critical values, = % of the symplin
degree of freedomn, was given in [21]; this case is also related to Hyenplectoralgebra
of [14]. Note the close resemblance between the algebra (9)—and the leading structure
constants (11)—and the quantum deformafitly, ~ Lo(su(1, 1)) of the algebra of area-
preserving diffeomorphisms of the cylinder [8, 19], although we recognize that the case
discussed in this letter is far richer.

Ifthe analyticity of the symbols! of (1) is takeninto account, then one should worry about
arestriction of the range of the indic&s mqg. The subalgebrﬁg0 (u(N+, N_)) = {LL|A, =
1, — (Zﬁ>a |mep| + Zﬁw Imgpe|)/2 € N}t of polynomial functions orG.g, the structure
constantsf,!/ (ao, .. ., az,) of which are zero for > (>°_ (I, + J,) — 1)/2, can be extended
beyond the ‘wedgeA > 0 by analytic continuation, that is, by revoking this restriction to
A € Z/2. The aforementioned ‘extension beyond the wedge’ (see [8, 15] for similar concepts)
makes possible the existence of conjugated pdifs L', with Yolot1,=2r+1and
I, + I, = r, € N, that give rise to central terms under commutation:

B E2r+1272r(_1)2g:1\,++1 To
@1

where(17v, ..., N") is a string of lengtty__, r, = 2r + 1, anda"~ denotes a substring
made ofr,-timesa, for eachx. The generatoi = Lg is central (it commutes with everything)
and the Lie algebra two-cocycle (13) defines a non-trivial central extensiog f(N., N_))
by U(1).

A thorough study of the Lie-algebra cohomology &f (u(N+, N_)) and its irreps still
remains to be accomplished; it requires separate attention and shall be left for future works.

=yl r
:‘(Lm’ Ln )

£ @ NSl (13)

m,—m

t N, Z, R andC denote the set of natural, integer, real and complex numbers, respectively.
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Two-cocycles such as (13) provide the essential ingredient to construct invariant geometric
action functionals on coadjoint orbits 8f; (u(N+, N_))—see, e.g., [10] for the derivation of
the WZNW action ofD = 2 matter fields coupled to a chire¥,, gravity background from
Weo == Lo(su(l, 1))).
In order to deduce the structure constants for genefalu(N., N_)) from
L, (u(N+, N_)), a procedure similar to that of [12], for the particular cast 6f (2, R)), can
be applied. Special attention must be paid to the Iimit}_flj%ﬁ,;(u(m, N_)) =~ Pc(M,,, ),

which coincides with the Poisson algebra of complex (wave)functighs v, = ‘plfnl on
algebraic manifolds (coadjoint orbits [22}f ~ U(N+, N))/U@N 1. Itis well known

N+N_—

that there exists a natural symplectic structuvg,, , , 2), which defines the Poisson algebra

1 J
Quibriazp2 l[’ al/f
8ga1/31 0g@2pe

W Wi} = (14)
and an invariant symmetric bilinear fortw, |v,)) = [v(g)¥ L (g)¥,/ (g) given by the natural
invariant measure(g) ~ QV¥®-Y/2onU(N,, N_), whereg®? = gh* € C,a # B, isa (local)
system of complex coordinates @4, , . The structure constants for (14) can be obtained
through £/t = (yX|{y!, ¥/}). Also, an associative-product can be defined through

mnK
the convolution of two functionsy), « v/)(g") = [v(9)¥] (g)¥, (g7 e g'), which gives
the algebraPc(M,,, ) a non-commutative characteg—e g’ denotes the group composition
law of U (N4, N_). The derivation of a manifest expression for all these structures is still in
progress [23].
Taking advantage of all these geometrical tools, action functionalg fau (N., N_))
Yang-Mills gauge theories i dimensions could be built as

s:dex<FW<x,g)|FW<x,g)>
FV)/ = 3VAV - ayAv + {Aw A)/}
Avx, @) = ALY (e)  vy=1....D

the ‘vacuum configurations’ (spacetime-constant potenti#lgg) = A,(0,g)) of
which, define the action for higher-extended objecf§iN — 1)-‘branes’, in the usual
nomenclature. Here, (u(N+, N_)) plays the role of gauge symplectic (volume-preserving)
diffeomorphismdL,, = {v, -} on theN(N — 1)-braneM,, , . A particularly interesting case
might beSU(2,2) = U(2,2)/U(1): the conformal group in 3 + 1 (or the AdS group in
4 +1) dimensions, in an attempt to construct ‘conformal gravities’ in realistic dimensions. The
infinite-dimensional algebr4, (u(2, 2)) might be seen as thgeneralization of the Virasoro
(two-dimensional) conformal symmetry3a- 1 dimensions

Finally, let me comment on the potential relevance of@tiealgebrasC; (G) on tractable
non-commutative versions [24] of symmetric curved spades G/H, where the notion of
a pure statey! replaces that of a point. The possibility of describing phase-space physics in
terms of the quantum analogue of the algebra of functions (the covariant syfjpolnd the
absence of localization expressed by the Heisenberg uncertainty relation, was noticed a long
time ago by Dirac [25]. Just as the standard differential geometfy chin be described by
using the algebr&*° (M) of smooth complex functiong on M (that is, Ilmﬂw L;(G), when

considered as an associative, commutative algebra), a non- commutatlve geonétoafobe
described by using the algebfa (G), seen as an associative algebra with a non-commutative
*-product like (7), (8). The appealing feature of a non-commutative sphdée that aG-
invariant ‘lattice structure’ can be constructed in a natural way, a desirable property as regards

(15)

Tt ForN_ # 0, other cases could be also contemplated (e.g. continuous sefi&ghf1)).
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finite models of quantum gravity (see e.g., [26] and references therein). Indeed, as already
mentioned £; (G) collapses to Mat(C) (the full matrix algebra ofl x d complex matrices)
whenevel, coincides with the eigenvalue of, in ad-dimensional irre;; of G. This fact
provides a finited-points) ‘fuzzy’ or ‘cellular’ description of the non-commutative spac¢e

the classical (commutative) case being recovered in the Jimit oo. The notion of space
itself could be the collection of all of them, enclosed in a single irregpfG) for general

i, with different multiplicities, as it actually happens with the reduction of an irrep of the
centrally extended Virasoro group under §t5(2, R) subgroup [27]; the multiplicity should
increase withu (‘the density of points’), so that classical-like spaces are more abundant. Itis
also a very important feature @f; (u(N+, N_)) that the quantization deformation scheme (7)
does not affect the maximal finite-dimensional subalgeb(a/., N_) (‘good observables’ or
preferred coordinates [17]) of non-commuting ‘position operators’

A oA A X A A
Yap = —_(Gwﬂ + Gﬂa) Vga = —_(Gaﬂ — Gﬂa) a<p
2 ) 2h (16)
Yo = ﬁ(naaGaa - not+l,a+1Ga+1,a+l)
onthe algebraic manifoldf, , , wherex denotes aparameter that gigedimensions of length
(e.g., the square root of the Planck are). The ‘volume’v; of the N — 1 submanifolds
M; of theflag manifoldM, , = My D --- D M, (see, e.g., [28] for a definition of flag

manifolds) is proportional to the eigenvalug of the su(N., N-) Casimir operatonéj in
those coordinatesy; = A/ ;. Large volumes (flat-like spaces) correspond to a high density
of points (largew). In the classical limikk — 0, u — oo, they coordinates commute.

| thank the University of Granada for a Post-doctoral grant and the Department of Physics of
Swansea for its hospitality. | gratefully acknowledge several discussions with V Aldaya who
also introduced me to this subject.
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